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Introduction
There can be few people who have not heard of the famous Mandelbrot 

Set and seen fabulous images of its wonders in books and on the web. I myself
have already written a number of books on the subject which explain in some 
detail how the fractal and others like it are generated. In this book I wish to 
explore some different ways in which the basic algorithm can be altered to 
produce a whole new range of fractal images.

First, let us review the process by which the basic image, shown 
opposite, is created.

Any point on the plane can be specified by quoting its X and Y 
coordinates. Often we write these as a pair of bracketed numbers; so, for 
example, (5, -3) represents a point 5 units to the right of the origin and 3 units 
below it.

There is, however, a much more powerful way of dealing with points on 
the plane using what are known as complex numbers. The same point is 
represented by the complex number 5 – 3i where i is the square root of minus 
one. For our purposes, it is not necessary to understand how complex numbers
work – suffice it to say that they can be added and multiplied just like ordinary
numbers and that the result is always another complex number which can, of 
course, represent a new point in the complex plane.

Now the standard method of generating a fractal like the image opposite 
is to start with two complex numbers z and C. Perform a simple mathematical 
operation on z and C to get a new complex number z'. Replace z with z' and 
repeat the operation over and over again. Note that C remains constant 
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throughout this process but z will dot around all over the place.

Sometimes, z will get trapped in some kind of cycle. More often it will 
escape to infinity. It is usual to specify a circle round the origin at a suitable 
distance and count how many steps are needed for z to escape beyond this 
limit. If, after a certain number of iterations, z is still within the limit set, it is 
deemed to be stable. This number is then used to colour a point on the screen 
in one of two ways:

If you colour in the point represented by the initial starting position z0 
you will get what is known as the Julia Set for the value C. What this means is
that for any given algorithm or mathematical operation, there is a different 
fractal image for every value of C.

On the other hand, if you fix the starting point z0 (usually at (0, 0)) and 
colour the point on the screen according to different values of C you will 
obtain the famous Mandelbrot Set. In fact you can think of the Mandelbrot Set 
as a kind of map of all the possible Julia sets.

Stable points are usually printed as black. I call this the 'lake' colour.

The illustration opposite shows small images of the Julia sets 
superimposed on a a larger image of the Mandelbrot set. You will notice that 
the Julia sets whose value of C lies outside the main blob of the Mandelbrot 
set are fragmentary, but those whose C lies inside the Mandelbrot set have 
large stable areas. Julia sets whose C lies close to the boundary of the 
Mandelbrot set can have very intricate structures.

It is also of interest to note that the fractal structure of the Mandelbrot set
at any point near the boundary bears a remarkable resemblance to the Julia set 
which corresponds to that point.
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The Teddy Bear Sets
The algorithm for the standard Mandelbrot Set is as follows:

z ' = z2
+ C

This produces a stable cardioid with a whole series of 'lobes' attached to 
it as illustrated in the frontispiece.

The most obvious thing to try is equations of the form

z ' = z n
+ C

where n = 3, 4, 5 etc. The results are shown on the opposite page. I call them 
'Teddy Bear' sets because they sprout 'ears' on the lobes.

The image in the lower right corner is obtained with a fractional value of 
n = 1.5. i.e:

z ' = √ z 3
+ C

What this means is that at some stage in the calculation it is necessary to 
take the square root of z. Now every number has two square roots and the 
program must decide which to adopt. This is fine most of the time but as z 
circles round the origin, there comes a point where the program has to switch 
from one root to the other. This causes a discontinuity in the image and 
destroys its aesthetic integrity.

(Note that I shall refer to all fractals generated by iterating with different 
values of C as 'Mandelbrot' sets to differentiate them from 'Julia' sets which 
are iterated with a constant value of C and different initial points z0.)
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Generalised polynomials
Next we shall extend our range of polynomial functions by adding extra 

terms.

It turns out that the function

z ' = z 2
− R z + C

is not all that interesting. The extra term simply moves the standard 
Mandelbrot set to a new position in the plane. The function

z ' = z3
− R z + C

turns up some surprises however.

The images opposite are the Mandelbrot sets generated when R = 2 and 1
respectively on the top row and –1 and –2 along the bottom. (Remember that 
when R = 0 the set will be the Teddy Bear set for n = 3.)

Cubic equations like this one have, in general, two critical points – that is
to say, there are two starting points which result in a coherent fractal. The 
critical points for this function are ±√R /3 .

The images opposite are a composite of the fractals produced by both 
critical points. The points which are coloured red represent values of C which 
result in a stable orbit for at least one of the critical starting points. 
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Symmetry
It will not have escaped your notice that all the Mandelbrot sets 

illustrated so far are symmetrical about the horizontal (real) axis; others are 
symmetrical about the vertical (imaginary) axis too and many have rotational 
symmetry. Why is this?

The vertical symmetry is characteristic of polynomials which contain 
only odd terms such as z and z3. 

The horizontal symmetry is due to an entirely different cause. It is due to 
a fundamental property of complex numbers. Every complex number
z = x + iy has a counterpart on the opposite side to the real axis known as 

its complex conjugate z̄ = x − iy  It is easy to show that when you add or 
multiply the complex conjugates of two complex numbers, the result is simply
the complex conjugate of the original result. What this means is that whatever 
formula you apply to z using a certain value of C, z will perform an exact 
mirror image when you use the complex conjugate of C. The same is true if 
you multiply a complex number by a real number. But the feature breaks down
if you multiply a complex number by a constant which has an imaginary 
component.

Consider the function: z ' = z3
− R z2

+ C in which the constant R is a
complex number. In the illustrations opposite R has the values equal 0.5, 0.5 + 
i, 0.5 + 1.5i and 0.5 + 2i. Not only is the horizontal and vertical symmetry 
destroyed, the centre of rotational symmetry is not even centred on the origin 
(indicated by a circle in the second image).
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Logistic Functions
An important function widely used to predict population growth is

x ' = A x (1 − x)

Its complex equivalent is

z ' = C z (1 − z )

This function differs from those we have used so far in that the vital 
constant C is used to multiply the polynomial rather than being added. The 
effect of this is to render the fractal symmetric about both the X and Y axes.

The quadratic version quoted above generates a fractal with two large 
circular lobes (see the upper illustration opposite) whereas the following 
equation

z ' = C z (1 − z2
)

(which is a cubic equation) has one large lobe flanked by two smaller ones.

I will invite you to guess what the Mandelbrot set for the quartic version

z ' = C z (1 − z3
)

will look like.
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Inverted Fractals
All the examples we have seen so far are essentially the same – oddly 

shaped islands of stability with various lobes and tendrils attached. All the 
interesting activity lies outside the island of stability. 

We can often turn a mundane image into a thing of beauty by turning it 
inside out so that the majority of the plane is stable and the lobes and filaments
point inwards. This is easily achieved by using 1/C instead of C. The 
generating algorithm for the standard Mandelbrot set therefore becomes:

z ' = z 2
+ 1/C

and what it produces is a complete surprise. (The image opposite has been 
rotated by 90 degrees anti-clockwise to make it look like a pendant jewel.)

The cusp of the cardioid has been transformed into the tip of the tear 
drop and all the lobes round the perimeter of the cardioid have been turned 
inwards.

12



13



Celtic Gold
I said earlier that the generalised quadratic function

z ' = z 2
− R z + C

is not all that interesting. That is true – but its inverse 

z ' = z 2
− R z + 1/C

is extremely interesting.

As we have seen, when R = 0 the result is the tear drop pendant.

Other values of R produce the results shown opposite. At the top left, 
R = 1.3 we could have a design for a Celtic shield with strict left-right 
symmetry.

Next to it with R = 1.1 we obtain a Celtic lunula – worn by a wealthy 
lady round the neck

The image at the bottom left resembling a Celtic torc is a composite of 
three values of R the main one being 1.02.

The last has R equal to the complex value of 0.9 – 0.4i and could be a 
chieftain's breastplate.

(Note that these images have been rotated and embossed for effect.)
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A Filligree Pendant
This gorgeous fractal is generated by iterating another equation 

containing a reciprocal term:

z ' = ( z2+1/ z )/C

I do not know what causes the formula to produce such delicate lacework
but, as usual, you can find minibrot holes in it everywhere. (Note that, like the 
tear drop on page 11, this is an inverted fractal. It has also been shifted slightly
in the X direction before inversion. The effect of this is to change the overall 
shape of the fractal dramatically.) 

   

More reciprocal functions are illustrated later.

16



17



The Exponential Function
The remarkable image opposite is obtained by iterating the following 

function:

z ' = e z
− R z + C

with R = –1.1. It has been rotated anticlockwise by 90 degrees so the real axis 
is vertical but, surprisingly, it is not down the axis of symmetry.

The image below is generated by the inverse of the above function, this 
time with R = 1
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The Cosine Function
Like its real counterpart, the complex cosine function repeats with a 

period of 2π. Not surprisingly, the function

z ' = cos (z ) + C

generates a repeating fractal with a period of 2π as shown below:

When this image is inverted, all of the repeated motifs are compressed 
into a single dot in the middle while the four prominent spikes which extend 
into the black body are extended into claws and antennae.

The sine function generates an identical fractal to the one above but 
shifted by π of course. Also, both functions have two critical points. Using the 
other one, the repeated motifs point in the opposite direction.
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Sine and Tan Functions
Some interesting results can be obtained using the function

z ' = z − sin(z ) + C

(As before, using the cosine only shifts the pattern by π.)

The z term dominates when z is far from the origin so the function is only
stable in the central lake around the origin as shown below.

The function

z ' = z − tan (z ) + C

throws up a bit of a surprise. Like the equivalent sin function, only the central 
lake is stable. What is surprising is the apparently chaotic region that lies on 
either side on the central lake. Normally nearby values of C escape in about 
the same time; but here, the function displays extreme sensitivity to initial 
conditions – a characteristic of deterministic chaos.
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The Hyperbolic Cosine
While the ordinary sin, cos and tan functions repeat along the real axis, 

the hyperbolic cosine (cosh) repeats along the imaginary axis.

In the two illustrations opposite, the one on the left illustrates the 
function z ' = cosh ( z) + C while the one on the right illustrates

z ' = C cosh (z ) .

The former function has two critical points1 – i.e. there are two starting 
starting points which generate a coherent fractal image. These are shown 
below. The image on the opposite page is a composite of these. Note the 
incomplete nature of the two 'ears' and the way the two fractals join to form a 
continuous chain.

   

1 In fact there are an infinite number of critical points but only two which result in different images.

24



25



Squared Mandelbrots
The standard Mandelbrot fractal is a rather odd shape, aesthetically 

speaking. First it is symmetrical about the horizontal axis whereas, for pretty 
obvious reasons, humans prefer symmetry about the vertical axis. Now it is 
easy to rotate the image (as, indeed, I have done several times already) but a 
more interesting method is to square the parameter C – i.e. use a formula like 
the following: 

z ' = z 2
+ C2

This produces the image at the top right on the opposite page. It may not 
be terribly beautiful but it is interesting in that it now has rotational symmetry.

Even more fascinating is what happens if we iterate the function

z ' = z 2
+ C2

+ S

where S is a complex number. When S is a real number the fractal 
undergoes a remarkable series of changes. Reading from left to right and top 
to bottom the images opposite were created with the following values of S:

0.3, 0.2, 0,       –0.5, –0.75, –1,     –1.3, –1.4 and –1.5 

When S is positive the fractal splits into two complete brots which move 
further and further apart with their antennae pointing away from each other.

When S is negative, the fractal eventually pulls apart into two separate 
brots facing each other becoming completely separate only when S < –2. An 
interesting transition occurs when R = -0.75
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More Squared Fractals
In the top row opposite we explore the effect of  imaginary values of S is 

the equation

z ' = z 2
+ C2

+ S

 The first image has S = 0.62i. At S = 0.81i the fractal is tearing itself into
two, a process which is complete when S = i.

In the second row we explore the equation 

z ' = z3
+ C 2

+ S

The values of S shown are 0, 0.5 and 0.8i.

In the bottom row the function used is

z ' = z 2
+ z + C2

+ S

with values of S equal to 0, –0.5 and –0.67 respectively.

It is truly amazing how many variations there are of the basic Mandelbrot
shape.
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Periodicity
Every lobe in a polynomial Mandelbrot fractal has a periodicity – i.e. the 

point z homes in on a periodic cycle.. The main cardioid has a periodicity of 
one meaning that, when C lies in this region, z homes in on a single point.

The red lobe to the left of the cardioid has a periodicity of 2 and the point
z simply zig-zags back and forth.

 The green lobes above and below the cardioid – and the largest minibrot 
on the antenna – have a periodicity of 3 (see the first image on the right). 
When C lies near the centre of the lobe, z quickly homes in on a triangle as 
shown in white. If C is near the edge of a lobe, the triangle splits. In this case, 
C lies very near the secondary lobe which has a period of 9 so the triangle has 
split into three.

The blue lobes have a periodicity of 4. All the main sequence lobes on 
the edge of the cardioid describe simple convex polygons but the blue lobe on 
the antenna describes an hourglass shape because it is a period 2 split into two.

The yellow lobes have period 5. As this is a prime number it is the first 
lobe which exhibits a star shape as well as a pentagon.

The last image shows the orbits of lobes with period 6. In addition to the 
convex hexagon there is a triangle split into two and a zig-zag split into three.

It is a wonderful and little known fact that every lobe has a polygon 
associated with it and every topologically different polygon has its own lobe!

30



31



Periodicity (part II)
On page 26 we explored the function

z ' = z 2
+ C2

+ S

with different real values of S. It is interesting to see how, when the squared 
Mandelbrot function is torn apart using positive values of S, the two parts have
essentially the same shape and periodicity as the standard Mandelbrot shape. 
(In the first image opposite S has the value 0.3.)

But when S is negative, at the pinch point, the central lobe created has a 
periodicity of 2 – and as the two halves are pulled further and further apart, 
new central lobes are created with periods of 4, 8, 16 etc. This is why the 
process when S is negative is quite different from the process when S is 
positive.

The subsequent images show the cases when S = –0.7,  –1 and –1.395
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The Double Claw
As a final example of a polynomial fractal I present the double claw. It 

function is:

z ' = z 2
+

1

C 2
− S

where S = 0.6.

It is the inverse of one of the sequence of fractals shown on page 23 – 
namely:
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The Collatz Fractal
In 1937 Lothar Collatz put forward the following conjecture which has 

no known counterexample but which has never, as yet, been proved. His 
conjecture was that if you start with any positive integer n and carry out the 
following procedure, you will always end up with the sequence 1:4:2:1...

If n is even, halve it; if n is odd, multiply by 3 and add 1.

It is quite easy to derive a formula which will take any real number x and
generate a new number which obeys the above rule. One such formula is:

x ' = (7 x + 2 − (5 x + 2)cos (π x ))/4

For even numbers cos(πx) = 1 in which case x' = x/2; but when x is odd, 
cos(πx) =  –1 and x' = (12x + 4)/4 = 3x + 1.

It is a simple matter to convert this formula into one which can be 
iterated in the complex plane. I have chosen to use

z ' =
C
4

(7 z + 2 − (5 z + 2)cos (π z ))

The images opposite are Julia sets – that is to say, they map the 
behaviour of different starting points for a constant value of C, in this case, 1.

 The upper image shows the region from -8 to +8. As expected, there is a 
stable yellow lake at every integer along the real axis (although, curiously, the 
integer is not at the centre of the lake, nor is it always on the most prominent 
line in the region). The lower image shows the region between the origin and 
+2 in more detail.
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Final position
There are lots of ways of colouring the complex plane. The traditional 

method is to colour the plane according to the number of iterations needed for 
the initial point to reach a certain distance from the origin – the 'escape' 
distance. Another way is to colour the plane according to the distance the 
initial point reaches after a certain fixed number of iterations.

In the images opposite the colour indicates the distance the point z 
reaches after 3, 4, 5 and 6 iterations using the standard Mandelbrot algorithm

z ' = z2
+ C

Red indicates that the point has returned very close to where it started – 
i.e. the origin.

There is always a large red spot near the origin because when C is zero, z
never moves anywhere. The other red spots reveal the places where z is 
periodic with a periodicity equal to (or a divisor of) the number of iterations. 
So the first image picks out the lobes with a periodicity of 1 and 3.

The red blob on the left is due to the small 'brot' along the main 'antenna' 
which has a periodicity of 3.

This is often a more sensitive method of finding lobes and 'minibrots' 
with a certain period than trying to measure the period directly.
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Final Angle
Yet another way to colour code the points is by using the argument of z 

(i.e. its angular position) after a fixed number of iterations.  As before the four 
images opposite are generated using 3, 4, 5 and 6 iterations respectively.

This time, each lobe or minibrot becomes a centre round which the final 
angle rotates. In the first image there are just three centres whose periodicity is
3 – the two lobes above and below the main cardioid, the minibrot on the 
antenna and, of course, the origin which is always included because every 
number can be divided by 1.

With four iterations there are eight centres with a periodicity of 4. These 
are most easily counted by counting the number of white 'rays' which reach the
edge of the image.

Similarly it is easy to see that there are sixteen centres with a periodicity 
of 5 and 32 with a periodicity of 6. I have not proved it but it would seem that 
there are 2n-1 centres with a periodicity of n.

(The reason why oval contours have appeared in the images 5 and 6 is 
that the computer program stops counting iterations when z gets a certain 
distance away from the origin.. The outer regions are therefore limited to 
fewer iterations.)
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Epsilon spikes
As z wanders over the complex plane, sometimes it comes close to one or

other of the axes. This minimum distance called 'epsilon' can be monitored and
used to colour the image.

In the image opposite (which uses the standard Mandelbrot algorithm), 
points which wander close to the axes are picked out in white, red and blue. 
The values of C which do not cause z to wander close to either of the axes are 
coloured yellow. 

For aesthetic reasons as much as anything else, we have ignored both the 
initial value of z (which is zero in this case) and also the value of z after its 
first iteration (which is always C).

The prominent vertical line at the place where x =  – 0.5 is due to the fact
that when the real part of C is equal to –0.5, after the second iteration z is 
always a purely imaginary number – i.e. it always jumps back to the vertical 
axis. The series of vertical curves to the left of this line is, presumably, due to 
the fact that values of C here jump back to the vertical axis after 3, 4, 5 etc 
iterations.

This particular algorithm was invented by Clifford Pickover and images 
like these are often called Pickover spikes.
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More Epsilon Spikes
Top left we have the squared version of the standard Mandelbrot 

equation – i.e.

z ' = z 2
+ C2

Next to it we have a reciprocal function

z ' = z + 1 / z + C

(Note that the origin is at the bottom and the real axis is vertical)

At the bottom we have two inverted and squared functions namely:

z ' =
1

C2
( z3

− z )

and

z ' =
1

C2
( z +

1
z
)

Frankly, it is difficult to know where to start with these fractals. They are 
truly bizarre and quite unpredictable.
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Upsilon Dots
A variation on the idea of Epsilon Spikes is what I call Upsilon Dots. 

Instead of monitoring how close z approaches either of the axes we simply 
monitor how close it gets to the origin. (I refer to this distance as upsilon.)

In the images opposite, we explore how close z get to the origin after 3, 
5, 8 and 10 iterations.

Now in the case of the standard Mandelbrot algorithm, values of C which
are centred inside any of the lobes always return to the origin after precisely p 
iterations where p is the periodicity of the lobe. If we limit the number of 
iterations to 3 as in the first image on the right, then only those lobes with a 
periodicity of 3 (or 1) will stand out.

Limit the number of iterations to 5 and all the lobes with periodicities of 
1, 2, 3, 4 and 5 will light up.

The image below shows an Upsilon Dot map of a cubic function.
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Rational Polynomials
A rational polynomial is a function of the form f (z ) =

p( z )
q( z)

where

p (z ) and q (z )  are polynomial functions of z with real coefficients. Of critical 
importance is the order of the two functions p (z ) and q (z ) . The classic 
Mandelbrot set can be considered to be generated by a rational polynomial in 
which p (z ) = z 2 and q (z ) = 1 . Here the order of the numerator is 2 and the 
order of the denominator is zero. In general we can say that the order of a 
rational polynomial is equal to the order of the numerator minus the order of 
the denominator. Any rational polynomial whose order is greater than zero 
will, in general, generate a fractal after the manner of the Mandelbrot set but it 
will be distorted and may be fragmented as well.

For example, the image opposite is generated by the following algorithm:

z ' =
z4

+ 2z2
− 1

z2
− 1

+ C

Since p (z ) has order 4 and q (z ) has order 2 this function has order 2 so it
has a stable region. One of its critical points is the origin and this is the one 
that has been used here. As discussed on page 8 any polynomial with real 
coefficients whose critical points are also real will be symmetrical about the 
real axis.
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A Polynomial of order 1
Consider the function

z ' = z+1/ z + C

This can equally well be written as

 z ' =
z2

+1
z

+ C

It has a critical point at (1, 0) and its stable set looks like a hot air 
balloon. (The image has been rotated clockwise by 90°. The other image at the
top shows a magnified section.)

When C = 0, the sequence goes 1 => 2 => 2.5 => 2.9 => etc. which 
diverges off to infinity incredibly slowly. That is why there is a kind of 'bulls-
eye' round the origin. However, when C lies inside the stable area, the path of 
z curls ound and homes in on the point which is the solution to the equation
z+1 / z + C = z .  It is easy to see that this is just -1/C.

The image at the bottom shows the unrotated fractal together with a 
number of rays showing how the point z iterates using different values of C all 
taken from the dark blue ring which is an approximate circle of radius 0.5 
centred on the origin. All the rays start at the critical point z = 1 – i.e. the point 
on the real axis which is coloured yellow. As C moves round the dark blue 
ring, the rays become progressively more and more curved, finally homing in 
on a solution when C enters the stable region.
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A Polynomial of order –2
The function 1

z2
+ a

has order –2. In general, functions of order less 

than or equal to zero do not generate Mandelbrot fractals using the 'escape' 
algorithm because the iterative function

 z ' =
1

z2
+ a

+ C

is stable for all values of C.

In order to tease out its structure we must employ one of the other 
methods of turning its output into colour. The four illustrations opposite show 
the results of using the modulus, argument, epsilon spike and upsilon dot 
algorithms2 using a value of a = 0.5. (All of them have been rotated clockwise 
so the real axis is vertical.)

The first (the modulus algorithm) shows how far z has wandered away 
from the origin after 100 iterations. When C is close to zero, z qauickly enters 
a periodic orbit of order 2 and the colour is black. However, on the boundary 
of the bell-shaped curve there is a discontinuity. When C lies outside the 
triangular region, z can do some crazy things before settling onto a stable point
which is not that far from C itself. Inside the triangle there are stable and 
highly chaotic regions.

2 For an explanation of these algorithm see page 38 and the following pages.
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Multiplicative Polynomials
Illustrated below and opposite is the Mandelbrot set for the function

 z ' = C
z 3

+ 1
z

 (Note that the function is multiplied by C  rather than added. The latter option 
is relatively uninteresting.)

Illustration A is the standard 'escape' algorithm showing the chaotic 
'foam' characteristic of a reciprocal function. B shows the escape distance after
8 iterations. C is the 'escape' algorithm with C inverted and squared. Opposite 
is the epsilon spike algorithm using C squared

      

A                                     B                                    C
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A Multiplicative Polynomial
of order -2

 The function

 z ' = C
1

z 2
+ 1

 generates the lovely epsilon spike image shown opposite.

The modulus argument produces the images below charting the distance 
from the origin after 8, 16 and 100 iterations respectively.
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Final Fling
 To finish this section on Mandelbrot fractals I present the Mandelbrot set

for the function z3
+ 1
z2 + C .

Illustration A the standard Mandelbrot set. All points outside the unit 
circle escape to infinity. Inside the circle are three stable areas whose shape is 
that of the familiar Mandelbrot set for z2 + C. But the rest of the disc is filled 
with a mass of chaotic points which seem to contain a number of isolated 
stable brots and circles. To what extent these features are real or artefacts of 
the method of computation I do not know.

Illustration B shows the escape distance after 8 iterations. Not 
surprisingly it shows many similarities with illustration B on page 54.  C is a 
plot of upsilon dots and opposite is the epsilon spike algorithm using C 
squared and inverted

      

A                                     B                                    C
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Classic Julia Sets
So far we have concentrated on the Mandelbrot set of a particular 

complex function. As I explained on page 2, this is generated by always 
starting at a fixed point (often (0, 0)) and exploring the effect of varying the 
constant C. Julia sets, however,  are generated by fixing C and starting from 
any point in the complex plane. This means that, while there is only one 
Mandelbrot set for the function z ' = z2

+ C , there are an infinite number of
Julia sets3.

The images opposite show the Julia sets of the above function for the 
following values of C: (0.27, 0), (0.41671875, 0.21015625), (-0.235, 0.654) 
and (-0.75, 0.077). The first is very close to the cusp of the cardioid.

The second is inside one of the small minibrots attached to lobe number 
6 – hence the six armed stars. Since this value of C is actually inside a 
minibrot, the centre of the Julia set is stable and coloured with the lake colour 
(red). The third is close to one of the smaller lobes near lobe 3 while the last is 
in what is known as 'sea horse valley' – the crack between lobes 1 and 2.The 
variety of shapes is truly amazing.

All these Julia sets have rotational symmetry of order 2 because
(−z)2

= z2 . Interestingly, the function z ' = z 2
+ a z + C  does not have 

rotational symmetry about the origin but it does have rotational symmetry 
about the point a/2 because the equation can be reduced to the form
z1 ' = z1

2
+ C1 where z1 = z + a /2 and C1 = C − a2

/4 .

3 I am using the word 'set' here very loosely to mean the image generated by the stated algorithm 
rather than the formal mathematical definition of the word.
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 Polynomial Julia Sets
It will be no surprise to hear that while classical Julia sets have rotational

symmetry of order 2, the Julia sets generated by cubic and quartic equations 
have symmetries of order 3 and 4 as shown in the upper two illustrations on 
the right.

The image at the bottom left, however, has no symmetry at all. It was 
generated by the formula z ' = z3

− z + C  with C = (0.27, 0.28)

The bizarre structure at the bottom right was generated by the formula

z ' =
z 3

z − 1
+ C with C = (-1.85, 0) (rotated clockwise by 90°). The 

Mandelbrot set for this function is illustrated below and the value of C chosen 
lies on the X axis between the 'claws' on the left.
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Exponential Julia Sets
The function z ' = C e z  does not have a meaningful Mandelbrot set 

because for all values of C other than zero, all starting points diverge to 
infinity.

On the other hand, its Julia sets are very interesting because for any 
given value of C, different starting points will diverge at different rates. As an 
example, consider the case when C = 0.4. It is not difficult to show that all 
starting values of z diverge to infinity, even negative ones. But some starting 
values of z cause the point to go round and round in circles, gradually 
spiralling out until it reaches the limit fixed by the program.

The image below has been rotated clockwise so the imaginary axis is 
horizontal and negative real numbers are at the top. The centres of the spirals 
repeat along the imaginary axis with a period of 2π.

The rather 'blocky' nature of the image opposite is due to the fact that if 
the point just manages a complete circuit before exceeding the fixed limit, it 
has to go round a complete revolution before escaping next time round.
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Transcendental Julia Sets
The function z ' = C sin( z) has a perfectly respectable – if rather 

surprising – Mandelbrot set shown below.

The central circle has a radius of 1 and the smaller circles on either side 
are centred on the point (π/2, 0). On each side there are a series of minibrots 
the largest of which are centred on (n ± π/2, 0). As usual, interesting Julia sets 
are to be found when C is near the edges of the stable regions.

The illustration opposite has C = 1 + 0.4i
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A Tangent Julia Set
Illustrated opposite page 22 is the Mandelbrot set of the function

z ' = z − tan (z ) + C

in which I pointed out certain areas of chaos. Inside these areas there are 
islands of partial stability and values of C within these areas generate 
remarkable Julia sets. The illustration below shows part of the Julia set for the 
point (1.6, 0.8) and opposite is a detail of one of the 'bosses' in the negative 
half of the plane.
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A Hyperbolic Julia Set
A typical Julia set generated by the function z ' = C cosh(z ) is not 

dissimilar to that generated by the sin function (except that it repeats along the 
imaginary axis, not the real one). In detail, however it reveals a wonderful 
array of intricate patterns which resemble the growth of frost on a window 
pane.
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Polynomial Fractals
All the algorithms we have examined so far involve a single expression 

in a complex variable. It is this fact which gives these fractals a degree of 
coherence which makes them attractive. However, it is not necessary for there 
to exist a simple complex equation describing how a point (x, y) is transformed
into a new point (x', y') – a pair of equations will suffice such that

x ' = f (x , y )     and    y ' = g ( x , y)  

If f and g are polynomials, then the resulting fractal (if it exists) may be 
called a polynomial fractal.

In general, any initial point (x0, y0) can end up doing one of three things:

1. it may escape to infinity

2. it may home in on a single point or a finite periodic cycle of points

3. it may home in on what is called a 'strange attractor' – this is an 
infinite set of points which are strictly confined to a small region of 
the plane, often displaying a fractal structure.

One of the first strange attractors to be discovered was the Hénon 
attractor whose algorithm is 

x ' = 1 − 1.4x2
+ y

y ' = 0.3x

In the image opposite the basin of attraction is shown in black with 
colours indicating the rate of escape as in a standard Julia set image.
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More Strange Attractors
Shown opposite are four of my favourite strange attractors together with 

their basins of attraction.

First (top left) is the Tinkerbell attractor whose equations are

x ' = x2
− y2

− 0.6y
y ' = 2x ( y + 1) + 0.5y

Top right is what I call the tulip attractor with the following particularly 
simple equations:

x ' = xy
y ' = x2 − 1

Bottom left is the bow tie attractor:

x ' = 1.8x − 2xy
y ' = x2

− 0.5y2
− 0.7y

and finally, bottom right is the spider's web attractor:

x ' = x(1.2 − 1.1x2
+ y2

)

y ' = y(1.2 + x2
− 1.5y2

)

(The last three were discovered by the author using a search program 
after an idea by J.C.Sprott)
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Barry Martin Structures
These amazing structures (they are not fractals in the true sense of the 

word) were discovered by Barry Martin in 1986 and even now, nobody 
appears to know exactly how they are produced.

The starting point is a simple hopalong formula which, in general, 
produces a simple ellipse from any given starting point:

x ' = y + bx
y ' = −x

If b = 0 then any starting point (p, q) simply moves through a sequence 
of four points: (p, q)  → (q, -p) → (-p, -q) → (-q, p)  → (p, q) . But if b is a 
small number, the sequence does not quite end exactly where it started and the 
result is an apparently continuous ring of points forming an ellipse. (I say 
apparently because, for all I know, there may be values of  b which result in a 
periodic cycle but I haven't been able to find any.) 

What Barry Martin did was to replace the function bx with a variety of 
different functions of x. The classic Barry Martin fractal shown on the page 
opposite is generated using the formula

x ' = y + sgn(x )√∣ax − b ∣
y ' = 1 − x

where a = 4 and b = 0.5. (The curious function in the equation for x' is a sort of
signed square root. The values of a and b are not critical.)

The extraordinary thing about this fractal is the way it goes on growing, 
seemingly without limit.
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The Gingerbread Man
This extraordinary structure is generated from a particularly simple 

formula:

x ' = y + ∣x∣
y ' = 1 − x

In the centre of the gingerbread man there is a black lozenge which 
stretches from (0, 1) at the top left to (2, -1) at the bottom right. (The centre of 
this lozenge is not the origin; it is at (1, 0).) It is not difficult to show that any 
starting point in this region cycles through just 6 points. For example, starting 
at (1, 0.5) we cycle through (1.5, 0), (1.5, -0.5), (1, -0.5), (0.5, 0), (0.5, 0.5) 
and back to (1, 0.5). Similarly, any starting point in the man's head (e.g. (-1, 2)
cycles through his arms and legs with a period of 30. In fact all points within 
the black lozenges are stable with different periodicities which are multiples of
30. It is this (possibly unique) property of this function that is responsible for 
this extraordinary structure. 

Other starting points round the central figure generate bands pierced by 
black holes which contain further quasi periodic structures. These bands are of
two types; some (e.g. those in red and blue opposite) appear quite solid – like 
the gingerbread man himself; others (in yellow and green) are doubly pierced 
with black holes.
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Newton-Raphson Fractals
The newton-Raphson method is a method for finding the roots of an 

equation – that is to say, a way of finding values of z which make the function 
zero. I do not need to describe the method here in detail; suffice it to say that 
you start with a point, hopefully somewhere near to one of the roots, and use a 
derivative of the equation to calculate a 'correction' which, when subtracted 
from your original guess, moves you closer towards the desired solution.

For example, if you want to find the roots of the equation z2
= 1  the 

correction turns out to be z2
− 1
2z

. What we do, therefore is to iterate the 

equation z ' = z −
z 2

− 1
2z

until the correction reduces to near zero.

Now the roots of the equation z2
= 1 are, of course, 1 and –1 so it will 

not surprise you to learn that any starting point whose real part is greater than 
0 homes in on the positive root and any point whose real part is negative 
homes in on the negative root. In other words the boundary between the two 
zones of attraction is simply the imaginary axis.

In order to generate an interesting fractal, we make life a little more 
difficult for the algorithm by first multiplying the correction by a complex 
number R. When R = 1 the boundary is a straight line as shown in the first 
illustration opposite. The other illustrations are for R = (1 + 0.5i), (1 + 0.9i) 
and (1 + 0.995i). (The two black dots are, of course, the two roots.)

80



81



The Cube Roots of 1
The equation z3 = 1 has three complex roots, 1, –½ + √3i and  –½ – √3i.

It turns out that the correction term we need is z3
− 1

3z2 and the function 

we therefore need to iterate is

z ' = z −
z 3

− 1
3z2

Now you might expect that starting points would simply migrate towards
the nearest root but this turns out not to be the case. Instead the boundary 
between the basins of attraction turns out to be a fractal best illustrated by 
colouring the three basins in shades of contrasting colours.

Obviously, if you start close to one of the roots, that is where you will 
end up. But if you start somewhere near the boundary between the large 
coloured regions, you might end up anywhere!

For example,the white line shows the path of z which starts closest to the 
red root – but ends up at the blue one!

The boundary between the red, yellow and blue zones has the fascinating
property that every point on the boundary is a place where all three zones 
meet!
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Making Life Difficult
Just as we did with the Newton-Raphson algorithm for the solution to

z2
= 1  , if we multiply the correction factor by a complex number R – i.e. if 

we use the equation

z ' = z − R
z3

− 1
3z2

the triple chain illustrated on the previous page becomes more and more 
twisted.

For example, the high resolution image opposite shows the case where 
R = 1 + 0.95i.
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Christmas Lights
The images below (which have been rotated clockwise by 90°) were 

generated by using a variation4 of the Newton-Raphson method to 'solve' the 
equation zn = 1 with n = 3.2, 3.6 and 3.88. Now obviously an equation cannot 
have 3.6 roots any more than a mother cannot have 3.6 children. What 
happens is that the boundary which lies on the real axis (now vertical) expands
and tears itself apart producing a wonderful array of swags and strings which 
are shown in detail in the illustration opposite. When n = 3.88 then the region 
in between the arms becomes more and more complex and some of the points 
within it take a very long time to decide which root to go to! 

    

n = 3.2                         n = 3.6                           n = 3.88

The illustration opposite shows a detail of the swags when n = 3.7

4 When n is fractional we have a slight problem. During the calculation it is necessary to calculate 
the argument (i.e. the angle) of a complex number. This is a many-valued function. If we choose 
the smallest positive value, the N-R routine homes in on the correct roots but the resulting fractals 
are not very pleasing. To generate the images on this page I have used values in the range -π to + π.
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Problem Functions
Consider the equation 1

x2
− 1

= 1 . This can be simplified to x2
= 2

whose roots are obviously ±√2. But if we try to solve the equation using the 
Newton-Raphson method, we run into a problem because the function

f (x ) =
1

x2
− 1

− 1 goes off to infinity at ±1 as shown below.

Even when using complex numbers, as long as we start quite close to one
of these roots, all is well – but in general the majority of starting points 
diverge off to infinity.

In the illustration opposite the function used is the cubic function

f (z ) =
1

z3
− 1

− 1  which has the familiar three roots and starting points 

which home on these roots are shown in colour. The black areas diverge. 
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Pseudo Roots
The function f (z ) =

1

z3
− 1

− 1  is zero when z3
= 2 . In other 

words, it has three proper roots. On the other hand, it goes off to infinity when
z3

= 1 . Below is a 3D plot of the modulus of the function (the colours are 
determined by the argument). You can see that the function has three infinite 
spikes at the cube roots of 1. It also dips down to zero at the cube roots of 2.

The spikes are called its pseudo-roots because a simple modification of 
the Newton-Raphson algorithm will search these out instead. The results are 
shown opposite.
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The Cosine Function
The equation cos (z ) = k has multiple real roots (provided that k <= 1). 

The roots are symmetrical about the imaginary axis and are repeated at 
intervals of 2π on either side. Broadly speaking, the majority of starting points 
within each vertical band of width 2π homes in on the closest root but some 
points which start close to the centre line can migrate to other nearby roots. (In
fact, there are points which end up at a root miles away!)

When k is greater than 1 then the pairs of roots first merge and then 
diverge in the imaginary direction

A magnified portion of the region near the origin (with k = 4) is shown in
the illustration opposite.
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The Secant Function
sec(z ) =

1
cos

(z )  Whenever cos (z ) = 0 , sec(z ) goes off to infinity. 

This means that, when trying to find solutions to the equation sec(z ) = k , we 
must expect many starting points to diverge towards a pseudo-root.

When k is greater then 1, the function has a series of real roots around 
which are approximately circular basins of attraction as illustrated below (in 
which k = 2). The black regions are points which diverge off to infinity.

Something interesting happens when k lies between about 1.2 and 1.6. 
Areas of white appear in the fractal. These represent points which neither 
converge onto a root nor diverge to infinity. What happens is that these points 
converge onto a periodic repeating cycle, oscillating up and down between the 
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the two large approximately circular white blobs. Here k = 1.5

This is what happens when k < 1. The roots become imaginary. 
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The Tangent Function
Here is the N-R fractal generated using the equation tan (z ) = k  with 

k = 0

As the value of k is increased, the basins of attraction get more and more 
distorted until somewhere between 1.5 and 1.6 the basins become separated. 
The next illustrations shows the fractal when k = 2. The upper one shows the 
basins of attraction while the lower one is its complement showing the speed 
with which the unstable points diverge.
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The Exponential Function
Probably the most important complex function of them all is the 

exponential function e z . If we unpack the expression we find that

      e z
= e(x + iy )

= e x eiy
= e x

(cos( y ) + i sin( y ))

Solutions to the equation e z
= 1 all have the form x = 0, y = n π because

e0 = 1, cos(n π) = 1 and sin(n π) = 0. In other words, there are an infinite 
number of solutions at intervals of  π all along the imaginary (vertical) axis.

In general, starting points whose real component is positive migrate 
sensibly towards one of these roots but when x is negative, problems arise.

During the calculations it is necessary to divide by ex. When x is 
negative, ex is very small and so the result of the division is very large. Two 
things can now happen. Either the value is so large that it results in a math 
overflow error or the reciprocal of ex is so small that the correcting factor is 
effectively zero and z approaches the solution one unit at a time!

In the image opposite the black areas are points which cause a 
mathematical overflow (using standard double precision arithmetic). These 
points should also be filled with colour but they lead to roots which will be 
literally miles away!

The grey areas contain those points which approach their roots incredibly
slowly.

The final illustration in the book shows a magnified section (rotated by 
90°.
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All the images in this book were generated using a program written by the
author called Mandelbrot Explorer.

The program runs exclusively under Windows and may be downloaded free
from the author's website:

www.jolinton.co.uk

The author would be happy to hear from any readers who have enjoyed this
book or discovered new iterative fractals themselves. The author's email is:

joliverlinton@gmail.com

© J Oliver Linton

Carr Bank 2022
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